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ABSTRACT 
 

Feature selection involves identifying a subset of the most useful features that produces compatible results as the 

original entire set of features. A feature selection algorithm may be evaluated from both the efficiency and 

effectiveness points of view. While the efficiency concerns the time required to find a subset of features, the 

effectiveness is related to the quality of the subset of features. Based on these criteria, a fast clustering-based feature 

selection algorithm, FAST, is proposed and experimentally evaluated in this paper. The FAST algorithm works in 

two steps. In the first step, features are divided into clusters by using graph-theoretic clustering methods. In the 

second step, the most representative feature that is strongly related to target classes is selected from each cluster to 

form a subset of features. Features in different clusters are relatively independent, the clustering-based strategy of 

FAST has a high probability of producing a subset of useful and independent features. To ensure the efficiency of 

FAST, we adopt the efficient minimum-spanning tree clustering method. The efficiency and effectiveness of the 

FAST algorithm are evaluated through an empirical study. Extensive experiments are carried out to compare FAST 

and several representative feature selection algorithms, namely, FCBF, ReliefF, CFS, Consist, and FOCUS-SF, with 

respect to four types of well-known classifiers, namely, the probability-based Naive Bayes, the tree-based C4.5, the 

instance-based IB1, and the rule-based RIPPER before and after feature selection. The results, on 35 publicly 

available real-world high dimensional image, microarray, and text data, demonstrate that FAST not only produces 

smaller subsets of features but also improves the performances of the four types of classifiers. 

Keywords:  FCBF, ReliefF, CFS, Consist, FOCUS-SF, FAST, RIPPER, CMIM 

 

I. INTRODUCTION 

 

With the aim of choosing a subset of good features with 

respect to the target concepts, feature subset se-lection 

is an effective way for reducing dimensionality, 

removing irrelevant data, increasing learning accuracy, 

and improving result comprehensibility [43], [46]. 

Many feature subset selection methods have been 

proposed and studied for machine learning applications. 

They can be divided into four broad categories: the 

Embedded, Wrapper, Filter, and Hybrid approaches. 

 

The embedded methods incorporate feature selection as 

a part of the training process and are usually spe-cific to 

given learning algorithms, and therefore may be more 

efficient than the other three categories[28]. Traditional 

machine learning algorithms like decision trees or 

artificial neural networks are examples of em-bedded 

approaches[44]. The wrapper methods use the 

predictive accuracy of a predetermined learning algo-

rithm to determine the goodness of the selected sub-sets, 

the accuracy of the learning algorithms is usually high. 

However, the generality of the selected features is 

limited and the computational complexity is large. The 

filter methods are independent of learning algorithms, 

with good generality. Their computational complexity is 

low, but the accuracy of the learning algorithms is not 

guaranteed [13], [63], [39]. The hybrid methods are a 

combination of filter and wrapper methods [49], [15], 

[66], [63], [67] by using a filter method to reduce search 

space that will be considered by the subsequent wrapper. 

 

They mainly focus on combining filter and wrapper 

methods to achieve the best possible performance with a 

particular learning algorithm with similar time com-

plexity of the filter methods. The wrapper methods are 
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computationally expensive and tend to overfit on small 

training sets [13], [15]. The filter methods, in addition to 

their generality, are usually a good choice when the 

number of features is very large. Thus, we will focus on 

the filter method in this paper. 

 

With respect to the filter feature selection methods, the 

application of cluster analysis has been demonstrated to 

be more effective than traditional feature selection algo-

rithms. Pereira et al. [52], Baker et al. [4], and Dhillon 

et al. [18] employed the distributional clustering of 

words to reduce the dimensionality of text data. 

 

In cluster analysis, graph-theoretic methods have been 

well studied and used in many applications. Their re-

sults have, sometimes, the best agreement with human 

performance [32]. The general graph-theoretic cluster-

ing is simple: Compute a neighborhood graph of in-

stances, then delete any edge in the graph that is much 

longer/shorter (according to some criterion) than its 

neighbors. The result is a forest and each tree in the 

forest represents a cluster. In our study, we apply graph-

theoretic clustering methods to features. In particular, 

we adopt the minimum spanning tree (MST) based 

clustering algorithms, because they do not assume that 

data points are grouped around centers or separated by a 

regular geometric curve and have been widely used in 

practice. 

  

Based on the MST method, we propose a Fast 

clustering-bAsed feature Selection algoriThm 

(FAST).The FAST algorithm works in two steps. In the 

first step, fea-tures are divided into clusters by using 

graph-theoretic clustering methods. In the second step, 

the most repre-sentative feature that is strongly related 

to target classes is selected from each cluster to form the 

final subset of features. Features in different clusters are 

relatively independent; the clustering-based strategy of 

FAST has a high probability of producing a subset of 

useful and independent features. The proposed feature 

subset se-lection algorithm FAST was tested upon 35 

publicly available image, microarray, and text data sets. 

The experimental results show that, compared with 

other five different types of feature subset selection 

algorithms, the proposed algorithm not only reduces the 

number of features, but also improves the performances 

of the four well-known different types of classifiers. 

 

The rest of the article is organized as follows: In Section 

2, we describe the related works. In Section 3, we 

present the new feature subset selection algorithm 

FAST. In Section 4, we report extensive experimental 

results to support the proposed FAST algorithm. Finally, 

in Section 5, we summarize the present study and draw 

some conclusions. 

 

II. METHODS AND MATERIAL 
 

Related Work  

 

Feature subset selection can be viewed as the process of 

identifying and removing as many irrelevant and redun-

dant features as possible. This is because: (i) irrelevant 

features do not contribute to the predictive accuracy 

[33], and (ii) redundant features do not redound to 

getting a better predictor for that they provide mostly 

information, which is already present in other feature(s). 

 

Of the many feature subset selection algorithms, some 

can effectively eliminate irrelevant features but fail to 

handle redundant features [23], [31], [37], [34], [45], 

[59], yet some of others can eliminate the irrelevant 

while taking care of the redundant features [5], [29], 

[42], [68]. Our proposed FAST algorithm falls into the 

second group. 

 

Traditionally, feature subset selection research has fo-

cused on searching for relevant features. A well-known 

example is Relief [34], which weighs each feature ac-

cording to its ability to discriminate instances under dif-

ferent targets based on distance-based criteria function. 

However, Relief is ineffective at removing redundant 

features as two predictive but highly correlated features 

are likely both to be highly weighted [36]. Relief-F [37] 

extends Relief, enabling this method to work with noisy 

and incomplete data sets and to deal with multi-class 

problems, but still cannot identify redundant features. 

 

However, along with irrelevant features, redundant 

features also affect the speed and accuracy of learn-ing 

algorithms, and thus should be eliminated as well [36], 

[35], [31]. CFS [29], FCBF [68] and CMIM [22] are 

examples that take into consideration the redundant 

features. CFS [29] is achieved by the hypothesis that a 

  

good feature subset is one that contains features highly 

correlated with the target, yet uncorrelated with each 

other. FCBF ([68], [71]) is a fast filter method which 

can identify relevant features as well as redundancy 

among relevant features without pairwise correlation 
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analysis. CMIM [22] iteratively picks features, which 

maximize their mutual information with the class to 

predict, con-ditionally to the response of any feature 

already picked. Different from these algorithms, our 

proposed FAST algorithm employs clustering based 

method to choose features. 

 

Recently, hierarchical clustering has been adopted in 

word selection in the context of text classification (e.g., 

[52], [4], and [18]). Distributional clustering has been 

used to cluster words into groups based either on their 

participation in particular grammatical relations with 

other words by Pereira et al. [52] or on the distribution 

of class labels associated with each word by Baker and 

McCallum [4]. As distributional clustering of words are 

agglomerative in nature, and result in sub-optimal word 

clusters and high computational cost, Dhillon et al. [18] 

proposed a new information-theoretic divisive algorithm 

for word clustering and applied it to text classification. 

Butterworth et al. [8] proposed to cluster features using 

a special metric of Barthelemy-Montjardet distance, and 

then makes use of the dendrogram of the resulting 

cluster hierarchy to choose the most relevant attributes. 

Unfortunately, the cluster evaluation measure based on 

Barthelemy-Montjardet distance does not identify a fea-

ture subset that allows the classifiers to improve their 

original performance accuracy. Furthermore, even com-

pared with other feature selection methods, the obtained 

accuracy is lower. 

 

Hierarchical clustering also has been used to select 

features on spectral data. Van Dijk and Van Hullefor 

[64] proposed a hybrid filter/wrapper feature subset 

selec-tion algorithm for regression. Krier et al. [38] 

presented a methodology combining hierarchical 

constrained clus-tering of spectral variables and 

selection of clusters by mutual information. Their 

feature clustering method is similar to that of Van Dijk 

and Van Hullefor [64] except that the former forces 

every cluster to contain consecutive features only. Both 

methods employed ag-glomerative hierarchical 

clustering to remove redundant features. 

 

Quite different from these hierarchical clustering based 

algorithms, our proposed FAST algorithm uses 

minimum spanning tree based method to cluster fea-

tures. Meanwhile, it does not assume that data points are 

grouped around centers or separated by a regular 

geometric curve. Moreover, our proposed FAST does 

not limit to some specific types of data. 

 

3 Feature Subset Selection Algorithm  

 

3.1 Framework and definitions 

 

Irrelevant features, along with redundant features, 

severely affect the accuracy of the learning machines 

[31], [35]. Thus, feature subset selection should be able 

to identify and remove as much of the irrelevant and re-

dundant information as possible. Moreover, “good 

feature subsets contain features highly correlated with 

(predictive of) the class, yet uncorrelated with (not 

predictive of) each other.” [30] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Framework of the proposed feature subset 

selec-tion algorithm 

 

Keeping these in mind, we develop a novel algorithm 

which can efficiently and effectively deal with both 

irrel-evant and redundant features, and obtain a good 

feature subset. We achieve this through a new feature 

selection framework (shown in Fig.1) which composed 

of the two connected components of irrelevant feature 

removal and redundant feature elimination. The former 

obtains features relevant to the target concept by 

eliminating irrelevant ones, and the latter removes 

redundant features from relevant ones via choosing 

representatives from different feature clusters, and thus 

produces the final subset. 

 

The irrelevant feature removal is straightforward once 

the right relevance measure is defined or selected, while 

the redundant feature elimination is a bit of 

sophisticated. In our proposed FAST algorithm, it 

involves (i) the construction of the minimum spanning 

tree (MST) from a weighted complete graph; (ii) the 

partitioning of the MST into a forest with each tree 
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representing a cluster; and (iii) the selection of 

representative features from the clusters. 

 

In order to more precisely introduce the algorithm, and 

because our proposed feature subset selection 

framework involves irrelevant feature removal and re-

dundant feature elimination, we firstly present the tra-

ditional definitions of relevant and redundant features, 

then provide our definitions based on variable correla-

tion as follows. 

 

John et al. [33] presented a definition of relevant 

features. Suppose to be the full set of features, ∈ be a 

feature, = −{ } and 
′
 ⊆ . Let 

′
 be a value-assignment of 

all features in 
′
 , a value-assignment of feature , and a 

value-assignment of the target concept . The definition 

can be formalized as follows. 

 

Definition 1: (Relevant feature) is relevant to the target 

concept if and only if there exists some 
′
 , and  , such 

that, for probability  (  
′
 =  

′
 ,   =  ) > 0,( = ∣ ′

 = 
′
 , = ) ∕= 

( = ∣ ′ = 
′
 ). Otherwise, feature is an irrelevant feature. 

 

Definition 1 indicates that there are two kinds of 

relevant features due to different 
′
 : (i) when 

′
 = , from 

the definition we can know that is directly relevant to 

the target concept; (ii) when  ⊊  , from  the 

definition we may obtain that ( ∣ , ) = ( ∣ ). It seems that 

is irrelevant to the target concept. 

 

 

However, the definition shows that feature is relevant 

when using 
′
 ∪{ } to describe the target concept. The 

reason behind is that either is interactive with 
′
 or is 

redundant with − 
′
 . In this case, we say is indirectly 

relevant to the target concept. 

 

Most of the information contained in redundant fea-

tures is already present in other features. As a result, 

redundant features do not contribute to getting better 

interpreting ability to the target concept. It is formally 

defined by Yu and Liu [70] based on Markov blanket 

[36]. The definitions of Markov blanket and redundant 

feature are introduced as follows, respectively. 

 

Definition  2: (Markov blanket) Given a feature ∈  , 

 

let ⊂ ( ∈∕ ), is said to be a Markov blanket for if and 

only if 

 

(  −   − {  },  ∣  ,   ) =  (  −   − {  },  ∣   ). 
 

 

Definition 3: (Redundant feature) Let be a set of 

features, a feature in is redundant if and only if it has a 

Markov Blanket within. Relevant features have strong 

correlation with target concept so are always necessary 

for a best subset, while redundant features are not 

because their values are completely correlated with each 

other. Thus, notions of feature redundancy and feature 

relevance are normally in terms of feature correlation 

and feature-target concept correlation. 

 

Mutual information measures how much the distribu-

tion of the feature values and target classes differ from 

statistical independence. This is a nonlinear estimation 

of correlation between feature values or feature values 

and target classes. The symmetric uncertainty ( ) [53] is 

derived from the mutual information by normalizing it 

to the entropies of feature values or feature values and 

target classes, and has been used to evaluate the 

goodness of features for classification by a number of 

researchers (e.g., Hall [29], Hall and Smith [30], Yu and 

Liu [68], [71], Zhao and Liu [72], [73]). Therefore, we 

choose symmetric uncertainty as the measure of corre-

lation between either two features or a feature and the 

target concept 

 

The symmetric uncertainty is defined as follows  

(  ,  ) = 2 ×(  ∣  ) . (1) 

Where, (  ) +   (  )  

 

1) ( ) is the entropy of a discrete random variable . 

Suppose ( ) is the prior probabilities for all  

 

values of   ,   (  ) is defined by 

∑ 

(  ) = − ( ) log2  ( ). (2) 

 

∈ 

 

2) Gain( ∣ ) is the amount by which the entropy of 

decreases. It reflects the additional information about 

provided by and is called the informa-tion gain [55] 

which is given by  

 

(  ∣  )  = (  ) −  (  ∣  ) 

(3) 

 

= (  ) −  (  ∣  ).  

Where ( ∣ ) is the conditional entropy which quantifies 

the remaining entropy (i.e. uncertainty) of a random 
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variable given that the value of another random variable 

is known. Suppose ( ) is the prior probabilities for all 

values of and ( ∣ ) is the posterior probabilities of given 

the values of , ( ∣ ) is defined by 

 

(  ∣  ) = − 

∑ ∑  

( ) ( ∣ ) log2  ( ∣ ).  (4)  

 ∈ ∈  

Information gain is a symmetrical measure. That is the 

amount of information gained about after observing is 

equal to the amount of information gained about after 

observing . This ensures that the order of two variables 

(e.g.,( , ) or ( , )) will not affect the value of the measure. 

 

Symmetric uncertainty treats a pair of variables sym-

metrically, it compensates for information gain’s bias 

toward variables with more values and normalizes its 

value to the range [0,1]. A value 1 of ( , ) indicates that 

knowledge of the value of either one completely 

predicts the value of the other and the value 0 reveals 

that and are independent. Although the entropy-based 

measure handles nominal or discrete variables, they can 

deal with continuous features as well, if the values are 

discretized properly in advance [20]. 

 

Given ( , ) the symmetric uncertainty of vari-ables and , 

the relevance T-Relevance between a feature and the 

target concept , the correlation F-Correlation between a 

pair of features, the feature re-dundance F-Redundancy 

and the representative feature R-Feature of a feature 

cluster can be defined as follows. 

 

Definition 4: (T-Relevance) The relevance between the 

feature ∈ and the target concept is referred to as the T-

Relevance of and , and denoted by ( , ). 

 

If ( , ) is greater than a predetermined threshold , we 

say that is a strong T-Relevance feature. 

 

Definition  5: (F-Correlation)  The  correlation  

between 

 

any pair of features and(  ,   ∈   ∧  ∕=  ) is 

called the F-Correlation of and    , and denoted by 

(  ,  ).   

Definition  6: (F-Redundancy)  Let =  { 1,  2, ...,  , 

...,  <∣  ∣} be  a  cluster  of features. if ∃    ∈ , 

(  ,  ) ≥(  ,  ) ∧(  ,  ) > (  ,  ) is 

always corrected for each ∈   (  ∕= ), thenare 

redundant features with respect to the given (i.e. 

each 

 

is a F-Redundancy). 

Definition  7: (R-Feature) A feature ∈= 

{ 1,  2, ...,  } (   <∣ ∣) is a representative feature of 

the cluster   ( i.e.is a R-Feature ) if and only if, 
= argmax

  ∈ 
(  ,  )

. 

 

This means the feature, which has the strongest T-

Relevance, can act as a R-Feature for all the features in 

the cluster. 

 

According to the above definitions, feature subset 

selection can be the process that identifies and retains 

the strong T-Relevance features and selects R-Features 

from feature clusters. The behind heuristics are that 

 

1) irrelevant features have no/weak correlation with 

target concept;  

2) redundant features are assembled in a cluster and a 

representative feature can be taken out of the 

cluster.  

 

3.2 Algorithm and analysis  

 

The proposed FAST algorithm logically consists of tree 

steps: (i) removing irrelevant features, (ii) constructing a 

MST from relative ones, and (iii) partitioning the MST 

and selecting representative features. 

 

For a data set with features = { 1, 2, ..., } and class , we 

compute the T-Relevance ( , ) value 

 

for each feature (1 ≤ ≤ ) in the first step. The features 

whose ( , ) values are greater than a predefined 

threshold comprise the target-relevant 

feature subset   
′
 = { 1

′
,  2

′
, ...,  

′
 } (  ≤  ). 

In the second step, we first calculate the F-

Correlation 

(  
′
 ,  

′
) value for each pair of features   

′
 and 

′
  

         

(  
′
,  

′
 

∈ 

′
 

∧ 

=  ). Then, viewing features 
′
 and   

′
  

   ∕    

as vertices and(  
′
,  

′
) (  =  ) as the weight of the  

          ∕           

edge between vertices   
′
 and   

′
, a weighted complete  

graph = (  ,  ) is constructed where = { 
′
 ∣  ′

 ∈  
′
 

∧ 

 

∈ 

[1, ] 

} 

and = 

{ 

(  
′
,  

′
) 

∣ 

(  
′
,  

′
 

∈ 

′
 

∧ 

, 

∈ 

 

            

[1, ] ∧  ∕=  }. As symmetric uncertainty is symmetric  
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further the F-Correlation ( 
′
, 

′
) is symmetric as well, thus 

is an undirected graph. 

 

The complete graph reflects the correlations among 

all the target-relevant features. Unfortunately, graph has 

vertices and ( −1)/2 edges. For high dimensional data, it 

is heavily dense and the edges with different weights are 

strongly interweaved. Moreover, the decom-position of 

complete graph is NP-hard [26]. Thus for graph , we 

build a MST, which connects all vertices such that the 

sum of the weights of the edges is the minimum, using 

the well-known Prim algorithm [54]. The weight of 

edge ( 
′
, 

′
) is F-Correlation ( 

′
, 

′
). 

 

After building the MST, in the third step, we first 

remove the edges    = 

{ 

(  
′
,  

′
) 

∣ 

(  
′
,  

′
 

∈ 

′
 

∧ 

, 

∈ 

 

        

[1, ] ∧ ∕= }, whose weights are smaller than both of the 

T-Relevance ( 
′
, ) and ( 

′
, ), from the MST. Each deletion 

results in two disconnected trees 1 and 2. 

Assuming the set of vertices in any one of the final trees 

to be ( ), we have the property that for each pair 

of vertices (  
′
,  

′
 ∈  (  )), (  

′
,  

′
) ≥ (  

′
,  ) ∨ 

 

( 
′
, 

′
) ≥ ( 

′
, ) always holds. From Definition 6 we know 

that this property guarantees the features in ( ) are 

redundant. 

 

This can be illustrated by an example. Suppose the MST 

shown in Fig.2 is generated from a complete graph . In 

order to cluster the features, we first traverse all the six 

edges, and then decide to remove the edge ( 0, 4) because 

its weight ( 0, 4) = 0.3 is smaller than both ( 0, ) = 0.5 and 

( 4, ) = 0.7. This makes the MST is clustered into two 

clusters denoted as ( 1) and ( 2). Each cluster is a MST as 

well. Take ( 1) as an example. From Fig.2 we know that 

( 0, 1) > 

(  1,  ), (  1,  2) >  (  1,  ) ∧(  1,  2) > 

(  2,  ), (  1,  3) >  (  1,  ) ∧(  1,  3) > 

 

( 3, ). We also observed that there is no edge exists 

between 0 and 2, 0 and 3, and 2 and 3. Consid-ering that 1 

is a MST, so the ( 0, 2) is greater than  

(  0 ,  1) and (  1,  2), (  0,  3) is greater than 

(  0 ,  1) and (  1,  3), and(  2,  3) is greater 

than(  1,  2) and(  2,  3). Thus, (  0,  2) > 

(  0 ,  ) ∧(  0,  2)  >  (  2,  ), (  0,  3) > 

(  0,  ) ∧   (  0,  3) >  (  3,  ), and(  2,  3) >  

(  2,  ) ∧(  2,  3) >  (  3,  ) also hold. As the  

mutual  information between any pair (  ,  )( ,   =  

0, 1, 2, 3 ∧  ∕=  ) of 0,  1,  2, and   3 is greater than  

the mutual information between class andor    ,  

features  0,  1,  2, and  3 are redundant.   

 
Figure 2. Example of the clustering step 

 

After removing all the unnecessary edges, a forest For-

est is obtained. Each tree ∈ Forest represents a cluster 

that is denoted as ( ), which is the vertex set of as well. 

As illustrated above, the features in each cluster are 

redundant, so for each cluster ( ) we choose a 

representative feature whose T-Relevance ( , ) is the 

greatest. All ( = 1...∣Forest∣) comprise the final feature 

subset ∪ . 

 

The details of the FAST algorithm is shown in 

Algorithm 1. 

 

Algorithm 1: FAST 

 

inputs : D( 1, 2, ..., , ) - the given 

data set - the T-

Relevance threshold. 

 

output: S - selected feature subset . 

//==== Part 1 : Irrelevant Feature Removal ==== 

1  for i = 1 to m do 

2 T-Relevance = SU (   ,   ) 

3 if T-Relevance >  then  

4 S = S ∪ {  };  

 

//==== Part 2 : Minimum Spanning Tree 

Construction ==== 

5  G = NULL; //G is a complete graph 

6  for each pair of features {  
′
,  

′
} ⊂ S do 

7 

 

 

F-Correlation = 

SU (  
′
, 

′
) 

     

      

8 

  
′
 /

′
  ℎ 

F-

Correlation ℎ ℎ   

    

; 

     

   ℎ      
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9 minSpanTree = Prim (G); //Using Prim 

Algorithm to generate the minimum 

spanning tree 

//==== Part 3 : Tree Partition and Representative 

Feature Selection ==== 

10 Forest = minSpanTree  

 

11 for each edge ∈ Forest do  

12 if  SU(  
′
,  

′
) < SU(  

′
,  ) ∧ SU(  

′
,  

′
) < SU(  

′
,  ) 

then  

13 Forest = Forest −  

 

14 S =  

 

15 for each tree ∈ Forest do  

16 = argmax ′ ∈   SU(  
′
 ,  )  

17 S = S ∪ { };  

 

return S 

 
Time complexity analysis. The major amount of work for 

Algorithm 1 involves the computation of values for T-

Relevance and F-Correlation, which has linear com-plexity in 

terms of the number of instances in a given data set. The first 

part of the algorithm has a linear time complexity ( ) in terms 

of the number of features . Assuming (1 ≤ ≤ ) features are 

selected as relevant ones in the first part, when = 1, only one 

feature is selected. Thus, there is no need to continue the rest 

parts of the algorithm, and the complexity is ( ). When 1 < ≤ , 

the second part of the algorithm firstly constructs a complete 

graph from relevant features and the complexity is ( 
2
), and 

then generates a MST from the graph using Prim algorithm 

whose time complexity is ( 
2
). The third part partitions the 

MST and chooses the representative features with the 

complexity of ( ). Thus when 1 < ≤ , the complexity of the 

algorithm is ( + 
2
). This means when ≤ 

√
 , FAST has linear 

complexity ( ), while obtains the worst complexity 

(  
2
) when = . However,is heuristically set 

 

to be √ 
 

∗ 
lg 

⌋ in the 
implementation of FAST. So   

 

  ⌊    2 
) 

    
 

the complexity is   ( ∗ lg  , which is typically less 
 

   2  
since 

2       

than (  )    <  . This can be explained 
 

as follows. Let   (  ) =  − lg
2
   , so the derivative 

 

′
( ) = 1 − 2 lg / , which is greater than zero when >1. So ( ) 

is a increasing function and it is greater than (1) which is 

equal to 1, i.e., >lg
2
 , when >1. This means the bigger the is, 

the farther the time complexity of FAST deviates from ( 
2
). 

Thus, on high dimensional data, the time complexity of FAST 

is far more less than ( 
2
). This makes FAST has a better 

runtime performance with high dimensional data as shown in 

Subsection 4.4.2. 

 

III. RESULTS AND DISCUSSION 

 

4 EMPIRICAL STUDY  

 

4.1 Data source 

 

For the purposes of evaluating the performance and 

effectiveness of our proposed FAST algorithm, verify-ing 

whether or not the method is potentially useful in practice, 

and allowing other researchers to confirm our results, 35 

publicly available data sets
1
 were used. 

 

The numbers of features of the 35 data sets vary from 37 to 

49152 with a mean of 7874. The dimensionality of the 54.3% 

data sets exceed 5000, of which 28.6% data sets have more 

than 10000 features. 

 

The 35 data sets cover a range of application domains such as 

text, image and bio microarray data classifica-tion. Table 1
2
 

shows the corresponding statistical infor-mation. 

 

Note that for the data sets with continuous-valued features, 

the well-known off-the-shelf MDL method [74] was used to 

discretize the continuous values. 

 

4.2 Experiment setup 

 

To evaluate the performance of our proposed FAST algorithm 

and compare it with other feature selection algorithms in a 

fair and reasonable way, we set up our experimental study as 

follows. 

 

1) The proposed algorithm is compared with five different 

types of representative feature selection algorithms. 

They are (i) FCBF [68], [71], (ii) ReliefF [57], (iii) CFS 

[29], (iv) Consist [14], and (v) FOCUS-SF [2], 

respectively.  

 

FCBF and ReliefF evaluate features individually. For 

FCBF, in the experiments, we set the relevance 

threshold to be the value of the ⌊ /log ⌋ ℎ ranked feature 

for each data set ( is the number of features in a given 

data set) as suggested by Yu and Liu [68], [71]. ReliefF 

searches for nearest neigh-bors of instances of different 

classes and weights features according to how well they 

differentiate instances of different classes.  

 

The other three feature selection algorithms are based on 

subset evaluation. CFS exploits best-first search based on 
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the evaluation of a subset that contains features highly 

correlated with the tar-get concept, yet uncorrelated with 

each other. The Consist method searches for the minimal 

subset that separates classes as consistently as the full set 

can under best-first search strategy. FOCUS-SF is a 

variation of FOCUS [2]. FOCUS has the same evaluation 

strategy as Consist, but it examines all subsets of features. 

Considering the time efficiency, FOUCS-SF replaces 

exhaustive search in FOCUS with sequential forward 

selection.  

 

For our proposed FAST algorithm, we heuristically set to 

be the value of the ⌊
√

 ∗lg ⌋ ℎ ranked feature for each data 

set.  

 

TABLE 1: Summary of the 35 benchmark data sets 

 
Data ID Data Name F I T Domain 

      

1 chess 37 3196 2 Text 
2 mfeat-fourier 77 2000 10 Image,Face 
3 coil2000 86 9822 2 Text 
4 elephant 232 1391 2 Microarray,Bio 
5 arrhythmia 280 452 16 Microarray,Bio 
6 fqs-nowe 320 265 2 Image,Face 
7 colon 2001 62 2 Microarray,Bio 
8 fbis.wc 2001 2463 17 Text 
9 AR10P 2401 130 10 Image,Face 
10 PIE10P 2421 210 10 Image,Face 
11 oh0.wc 3183 1003 10 Text 
12 oh10.wc 3239 1050 10 Text 
13 B-cell1 4027 45 2 Microarray,Bio 
14 B-cell2 4027 96 11 Microarray,Bio 
15 B-cell3 4027 96 9 Microarray,Bio 
16 base-hock 4863 1993 2 Text 
17 TOX-171 5749 171 4 Microarray,Bio 
18 tr12.wc 5805 313 8 Text 
19 tr23.wc 5833 204 6 Text 
20 tr11.wc 6430 414 9 Text 
21 embryonal-tumours 7130 60 2 Microarray,Bio 
22 leukemia1 7130 34 2 Microarray,Bio 
23 leukemia2 7130 38 2 Microarray,Bio 
24 tr21.wc 7903 336 6 Text 
25 wap.wc 8461 1560 20 Text 
26 PIX10P 10001 100 10 Image,Face 
27 ORL10P 10305 100 10 Image,Face 
28 CLL-SUB-111 11341 111 3 Microarray,Bio 
29 ohscal.wc 11466 11162 10 Text 
30 la2s.wc 12433 3075 6 Text 
31 la1s.wc 13196 3204 6 Text 
32 GCM 16064 144 14 Microarray,Bio 
33 SMK-CAN-187 19994 187 2 Microarray,Bio 
34 new3s.wc 26833 9558 44 Text 
35 GLA-BRA-180 49152 180 4 Microarray,Bio 

      

 

2) Four different types of classification algorithms are 

employed to classify data sets before and after feature 

selection. They are (i) the probability-based Naive 

Bayes (NB), (ii) the tree-based C4.5, (iii) the instance-

based lazy learning algorithm IB1, and (iv) the rule-

based RIPPER, respectively.  

Naive Bayes utilizes a probabilistic method for 

classification by multiplying the individual prob-

abilities of every feature-value pair. This algorithm 

assumes independence among the features and even 

then provides excellent classification results. Decision 

tree learning algorithm C4.5 is an exten-sion of ID3 that 

accounts for unavailable values, continuous attribute 

value ranges, pruning of de-cision trees, rule derivation, 

and so on. The tree comprises of nodes (features) that 

are selected by information entropy.  

 

Instance-based learner IB1 is a single-nearest-neighbor 

algorithm, and it classifies entities taking the class of 

the closest associated vectors in the training set via 

distance metrics. It is the simplest among the algorithms 

used in our study.  

 

Inductive rule learner RIPPER (Repeated Incremen-tal 

Pruning to Produce Error Reduction) [12] is a 

propositional rule learner that defines a rule based 

detection model and seeks to improve it iteratively by 

using different heuristic techniques. The constructed 

rule set is then used to classify new instances. 

 

3) When evaluating the performance of the feature subset 

selection algorithms, four metrics, (i) the proportion of 

selected features (ii) the time to ob-tain the feature 

subset, (iii) the classification accu-racy, and (iv) the 

Win/Draw/Loss record [65], are used.  

 

The proportion of selected features is the ratio of the 

number of features selected by a feature selec-tion 

algorithm to the original number of features of a data 

set.  

 

The Win/Draw/Loss record presents three values on a 

given measure, i.e. the numbers of data sets for which 

our proposed algorithm FAST obtains better, equal, and 

worse performance than other five feature selection 

algorithms, respectively. The measure can be the 

proportion of selected features, the runtime to obtain a 

feature subset, and the classification accuracy, 

respectively.  

 

4.3 Experimental procedure  

 
In order to make the best use of the data and obtain stable results, 

a (M = 5)×(N = 10)-cross-validation strat-egy is used. That is, 

for each data set, each feature subset selection algorithm and 

each classification algorithm, the 10-fold cross-validation is 

repeated M = 5 times, with each time the order of the instances 

of the data set being randomized. This is because many of the 

algorithms ex-hibit order effects, in that certain orderings 

dramatically improve or degrade performance [21]. Randomizing 

the order of the inputs can help diminish the order effects. 

 

In the experiment, for each feature subset selection 

algorithm, we obtain M×N feature subsets Subset and the 

corresponding runtime Time with each data set. Average 

∣Subset∣ and Time, we obtain the number of selected features 

further the proportion of selected fea-tures and the 

corresponding runtime for each feature selection algorithm on 

each data set. For each classifica-tion algorithm, we obtain 

M×N classification Accuracy for each feature selection 
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algorithm and each data set. Average these Accuracy, we 

obtain mean accuracy of each classification algorithm under 

each feature selection algorithm and each data set. The 

procedure Experimental Process shows the details. 

 

Procedure Experimental Process 

 
1  M = 5, N = 10 
2  DATA = {  1,  2, ...,  35} 
3  Learners = {NB, C4.5, IB1, RIPPER} 

 
4 FeatureSelectors = {FAST, FCBF, ReliefF, CFS, Consist, FOCUS-SF} 5 

for each data ∈ DATA do 
6 for each times ∈ [1, M] do  

7 randomize instance-order for data  

8 generate N bins from the randomized data  

9 for each fold ∈ [1, N] do  

10  TestData = bin[fold] 
 

11  TrainingData = data - TestData 
 

12  for each selector ∈ FeatureSelectors do 
 

13    (Subset, Time) = selector(TrainingData) 
 

14    TrainingData
′
 = select Subset from TrainingData 

 

15    TestData
′
 = select Subset from TestData 

 

16    for each learner ∈ Learners do 
 

17 
    

 

classifier = learner(TrainingData
′
) 

 

    
 

18      Accuracy = apply classifier to TestData
′ 

 

       
 

       
 

       
 

 

4.4 Results and analysis 

 

In this section we present the experimental results in terms of 

the proportion of selected features, the time to obtain the 

feature subset, the classification accuracy, and the 

Win/Draw/Loss record. 

 

For the purpose of exploring the statistical significance of 

the results, we performed a nonparametric Friedman test [24] 

followed by Nemenyi post-hoc test [47], as advised by 

Demsar[17] and Garcia and Herrerato [25] to statistically 

compare algorithms on multiple data sets. Thus the Friedman 

and the Nemenyi test results are reported as well. 

 

4.4.1 Proportion of selected features 

 

Table 2 records the proportion of selected features of the six 

feature selection algorithms for each data set. From it we 

observe that 

 

1) Generally all the six algorithms achieve significant 

reduction of dimensionality by selecting only a small 

portion of the original features. FAST on average 

obtains the best proportion of selected fea-tures of 

1.82%. The Win/Draw/Loss records show FAST wins 

other algorithms as well.  

2) For image data, the proportion of selected features of 

each algorithm has an increment compared with the 

corresponding average proportion of selected features 

on the given data sets except Consist has an 

improvement. This reveals that the five algorithms are 

not very suitable to choose features for image data 

compared with for microarray and  text data. FAST 

ranks 3 with the proportion of selected features of 

3.59% that has a tiny margin of 0.11% to the first and 

second best proportion of selected features 3.48% of 

Consist and FOCUS-SF, and a margin of 76.59% to the 

worst proportion of selected features 79.85% of 

ReliefF. 

 

3) For microarray data, the proportion of selected features 

has been improved by each of the six algorithms 

compared with that on the given data sets. This 

indicates that the six algorithms work well with 

microarray data. FAST ranks 1 again with the 

proportion of selected features of 0.71%. Of the six 

algorithms, only CFS cannot choose features for two 

data sets whose dimensionalities are 19994 and 49152, 

respectively.  

 

4) For text data, FAST ranks 1 again with a margin of 

0.48% to the second best algorithm FOCUS-SF.  

 

TABLE 2: Proportion of selected features of the six feature 

selection algorithms 

 

Data set 
 Proportion of selected features (%) of  

 

FAST FCBF CFS ReliefF Consist FOCUS-SF 
 

chess 16.22 21.62 10.81 62.16 81.08 18.92 
 

mfeat-fourier 19.48 49.35 24.68 98.70 15.58 15.58 
 

coil2000 3.49 8.14 11.63 50.00 37.21 1.16 
 

elephant 0.86 3.88 5.60 6.03 0.86 0.86 
 

arrhythmia 2.50 4.64 9.29 50.00 8.93 8.93 
 

fqs-nowe 0.31 2.19 5.63 26.56 4.69 4.69 
 

colon 0.30 0.75 1.35 39.13 0.30 0.30 
 

fbis.wc 0.80 1.45 2.30 0.95 1.75 1.75 
 

AR10P 0.21 1.04 2.12 62.89 0.29 0.29 
 

PIE10P 1.07 1.98 2.52 91.00 0.25 0.25 
 

oh0.wc 0.38 0.88 1.10 0.38 1.82 1.82 
 

oh10.wc 0.34 0.80 0.56 0.40 1.61 1.61 
 

B-cell1 0.52 1.61 1.07 30.49 0.10 0.10 
 

B-cell2 1.66 6.13 3.85 96.87 0.15 0.15 
 

B-cell3 2.06 7.95 4.20 98.24 0.12 0.12 
 

base-hock 0.58 1.27 0.82 0.12 1.19 1.19 
 

TOX-171 0.28 1.41 2.09 64.60 0.19 0.19 
 

tr12.wc 0.16 0.28 0.26 0.59 0.28 0.28 
 

tr23.wc 0.15 0.27 0.19 1.46 0.21 0.21 
 

tr11.wc 0.16 0.25 0.40 0.37 0.31 0.31 
 

embryonal-tumours 0.14 0.03 0.03 13.96 0.03 0.03 
 

leukemia1 0.07 0.03 0.03 41.35 0.03 0.03 
 

leukemia2 0.01 0.41 0.52 60.63 0.08 0.08 
 

tr21.wc 0.10 0.22 0.37 2.04 0.20 0.20 
 

wap.wc 0.20 0.53 0.65 1.10 0.41 0.41 
 

PIX10P 0.15 3.04 2.35 100.00 0.03 0.03 
 

ORL10P 0.30 2.61 2.76 99.97 0.04 0.04 
 

CLL-SUB-111 0.04 0.78 1.23 54.35 0.08 0.08 
 

ohscal.wc 0.34 0.44 0.18 0.03 NA NA 
 

la2s.wc 0.15 0.33 0.54 0.09 0.37 NA 
 

la1s.wc 0.17 0.35 0.51 0.06 0.34 NA 
 

GCM 0.13 0.42 0.68 79.41 0.06 0.06 
 

SMK-CAN-187 0.13 0.25 NA 14.23 0.06 0.06 
 

new3s.wc 0.10 0.15 NA 0.03 NA NA 
 

GLA-BRA-180 0.03 0.35 NA 53.06 0.02 0.02 
 

Average(Image) 3.59 10.04 6.68 79.85 3.48 3.48 
 

Average(Microarry) 0.71 2.34 2.50 52.92 0.91 0.91 
 

Average(Text) 2.05 3.25 2.64 10.87 11.46 2.53 
 

Average 1.82 4.27 3.42 42.54 5.44 2.06 
 

Win/Draw/Loss - 33/0/2 31/0/4 29/1/5 20/2/13 19/2/14 
 

 
The Friedman test [24] can be used to compare k al-gorithms 

over N data sets by ranking each algorithm on each data set 
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separately. The algorithm obtained the best performance gets the 

rank of 1, the second best ranks 2, and so on. In case of ties, 

average ranks are assigned. Then the average ranks of all 

algorithms on all data sets are calculated and compared. If the 

null hypothesis, which is all algorithms are performing 

equivalently, is rejected under the Friedman test statistic, post-

hoc tests such as the Nemenyi test [47] can be used to determine 

which algorithms perform statistically different. 

 

The Nemenyi test compares classifiers in a pairwise manner. 

According to this test, the performances of two classifiers are 

significantly different if the distance of 

the average ranks exceeds the critical distance CD   = 
√ 

( +1)
 , where the is based on the Studentized 

6 √
2. 

 

range statistic [48] divided by 
 

In order to further explore whether the reduction rates are 

significantly different we performed a Friedman test followed 

by a Nemenyi post-hoc test. 

 

The null hypothesis of the Friedman test is that all the 

feature selection algorithms are equivalent in terms of 

proportion of selected features. The test result is p = 0. This 

means that at = 0.1, there is evidence to reject the null 

hypothesis and all the six feature selection al-gorithms are 

different in terms of proportion of selected features. 

 

 

 

 

Fig. 3: Proportion of selected features comparison of all 

feature selection algorithms against each other with the 

Nemenyi test. 

 

In order to further explore feature selection algorithms 

whose reduction rates have statistically significant dif-

ferences, we performed a Nemenyi test. Fig. 3 shows the 

results with = 0.1 on the 35 data sets. The results indicate that 

the proportion of selected features of FAST is statistically 

smaller than those of RelieF, CFS and FCBF, and there is no 

consistent evidence to indicate sta-tistical differences between 

FAST , Consist, and FOCUS-SF, respectively. 

 

4.4.2 Runtime 

 

TABLE 3: Runtime (in ms) of the six feature selection 

algorithms 

 
Data set FAST FCBF CFS ReliefF Consist FOCUS-SF 

       

chess 105 60 352 12660 1999 653 
mfeat-fourier 1472 716 938 13918 3227 660 
coil2000 866 875 1483 304162 53850 1281 
elephant 783 312 905 20991 2439 1098 
arrhythmia 110 115 821 3684 3492 2940 
fqs-nowe 977 97 736 1072 1360 1032 
colon 166 148 12249 744 1624 960 
fbis.wc 14761 16207 66058 79527 579376 479651 

AR10P 706 458 57319 3874 3568 2083 
PIE10P 678 1223 77579 7636 4149 2910 
oh0.wc 5283 5990 59624 4898 488261 420116 
oh10.wc 5549 6033 28438 5652 428459 402853 
B-cell1 160 248 103871 1162 2476 1310 
B-cell2 626 1618 930465 4334 5102 2556 
B-cell3 635 2168 1097122 7001 4666 2348 
base-hock 8059 21793 146454 728900 999232 1017412 
TOX-171 1750 1558 1341345 9757 17185 8446 
tr12.wc 3089 3585 51360 2558 53304 34270 
tr23.wc 4266 2506 32647 1585 29165 16649 
tr11.wc 5086 5575 136063 4418 111073 79000 
embryonal-tumours 754 314 10154 1681 5045 1273 
leukemia1 449 278 10900 790 5708 1263 
leukemia2 1141 456 216888 894 10407 3471 
tr21.wc 4662 5543 218436 4572 89761 55644 
wap.wc 25146 28724 768642 33873 1362376 1093222 
PIX10P 2957 9056 25372209 11231 9875 4292 
ORL10P 2330 12991 30383928 11547 13905 5780 
CLL-SUB-111 1687 1870 6327479 12720 17554 12307 
ohscal.wc 353283 391761 981868 655400 NA NA 
la2s.wc 70776 99019 2299244 118624 7400287 NA 
la1s.wc 79623 107110 2668871 128452 7830978 NA 
GCM 9351 4939 3780146 32950 39383 26644 
SMK-CAN-187 4307 5114 NA 34881 67364 38606 
new3s.wc 790690 960738 NA 2228746 NA NA 
GLA-BRA-180 29854 17348 NA 97641 220734 152536 
Average(Image) 1520 4090 9315452 8213 6014 2793 
Average(Microarry) 1468 1169 1152695 8059 9590 5385 
Average(Text) 6989 8808 137232 107528 381532 327341 
Average 3573 4671 2456366 45820 149932 126970 
Win/Draw/Loss - 22/0/13 33/0/2 29/0/6 35/0/0 34/0/1 

       

 

Table 3 records the runtime of the six feature selection 

algorithms. From it we observe that 
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1) Generally the individual evaluation based feature 

selection algorithms of FAST, FCBF and ReliefF are 

much faster than the subset evaluation based algorithms 

of CFS, Consist and FOCUS-SF. FAST is consistently 

faster than all other algorithms. The runtime of FAST is 

only 0.1% of that of CFS, 2.4% of that of Consist, 2.8% 

of that of FOCUS-SF, 7.8% of that of ReliefF, and 

76.5% of that of FCBF, respectively. The 

Win/Draw/Loss records show that FAST outperforms 

other algorithms as well.  

 

2) For image data, FAST obtains the rank of 1. Its runtime is 

only 0.02% of that of CFS, 18.50% of that of ReliefF, 

25.27% of that of Consist, 37.16% of that of FCBF, and 

54.42% of that of FOCUS-SF, respectively. This reveals 

that FAST is more efficient than others when choosing 

features for image data.  

 

3) For microarray data, FAST ranks 2. Its runtime is only 

0.12% of that of CFS, 15.30% of that of Consist, 18.21% 

of that of ReliefF, 27.25% of that of FOCUS-SF, and 

125.59% of that of FCBF, respectively.  

 

4) For text data, FAST ranks 1. Its runtime is 1.83% of 

that of Consist, 2.13% of that of FOCUS-SF, 5.09% of 

that of CFS, 6.50% of that of ReliefF, and 79.34% of 

that of FCBF, respectively. This indicates that FAST is 

more efficient than others when choosing features for 

text data as well.  

 

 

 

 

Fig. 4: Runtime comparison of all feature selection algo-

rithms against each other with the Nemenyi test. 

 

In order to further explore whether the runtime of the six 

feature selection algorithms are significantly different we 

performed a Friedman test. The null hypothesis of the 

Friedman test is that all the feature selection algo-rithms are 

equivalent in terms of runtime. The test result is p = 0. This 

means that at = 0.1, there is evidence to reject the null 

hypothesis and all the six feature selection algorithms are 

different in terms of runtime. Thus a post-hoc Nemenyi test 

was conducted. Fig. 4 shows the results with = 0.1 on the 35 

data sets. The results indicate that the runtime of FAST is 

statistically better than those of ReliefF, FOCUS-SF, CFS, 

and Consist, and there is no consistent evidence to indicate 

statistical runtime differences between FAST and FCBF. 

 

4.4.3 Classification accuracy 

 

Tables 4, 5, 6 and 7 show the 10-fold cross-validation 

accuracies of the four different types of classifiers on the 35 

data sets before and after each feature selection algorithm is 

performed, respectively. 

 

Table 4 shows the classification accuracy of Naive Bayes. 

From it we observe that 

 
1) Compared with original data, the classification accuracy of 

Naive Bayes has been improved by FAST, CFS, and FCBF by 

12.86%, 6.62%, and 4.32%,  

 

respectively. Unfortunately, ReliefF, Consist, and 

FOCUS-SF have decreased the classification accu-racy 

by 0.32%, 1.35%, and 0.86%, respectively. FAST ranks 

1 with a margin of 6.24% to the second best accuracy 

80.60% of CFS. At the same time, the Win/Draw/Loss 

records show that FAST outper-forms all other five 

algorithms. 
2) For image data, the classification accuracy of Naive 

Bayes has been improved by FCBF, CFS, FAST, and 

ReliefF by 6.13%, 5.39%, 4.29%, and 3.78%, re-

spectively. However, Consist and FOCUS-SF have 

decreased the classification accuracy by 4.69% and 

4.69%, respectively. This time FAST ranks 3 with a 

margin of 1.83% to the best accuracy 87.32% of FCBF.  

 

3) For microarray data, the classification accuracy of 

Naive Bayes has been improved by all the six 

algorithms FAST, CFS, FCBF, ReliefF, Consist, and 

FOCUS-SF by 16.24%, 12.09%, 9.16%, 4.08%, 4.45%, 

and 4.45%, respectively. FAST ranks 1 with a mar-gin 

of 4.16% to the second best accuracy 87.22% of CFS. 

This indicates that FAST is more effective than others 

when using Naive Bayes to classify microarray data.  

 

4) For text data, FAST and CFS have improved the classification 

accuracy of Naive Bayes by 13.83% and 1.33%, respectively. 

Other four algorithms Re-liefF, Consist, FOCUS-SF, and 

FCBF have decreased the accuracy by 7.36%, 5.87%, 4.57%, 

and 1.96%, respectively. FAST ranks 1 with a margin of 

12.50% to the second best accuracy 70.12% of CFS.  

 

TABLE 4: Accuracy of Naive Bayes with the six feature 

selection algorithms 

 
  Classification accuracy of Naive Bayes with  

Data set FAST FCBF CFS ReliefF Consist FOCUS-SF Full set 
chess 92.92 92.12 90.43 88.56 89.50 94.34 87.68 
mfeat-fourier 80.05 78.57 79.31 76.32 76.72 76.72 76.07 
coil2000 94.04 93.53 92.59 76.96 84.64 94.03 78.04 
elephant 99.47 67.96 85.98 87.54 99.94 99.94 82.34 
arrhythmia 73.01 65.98 69.64 64.53 69.24 69.24 63.06 
fqs-nowe 69.81 71.57 70.45 66.44 71.35 71.35 65.61 
colon 95.08 84.81 84.81 68.33 85.48 85.48 56.33 
fbis.wc 70.04 49.79 61.26 38.75 39.20 39.20 61.89 
AR10P 69.23 81.08 82.77 80.77 62.46 62.46 72.62 
PIE10P 96.83 95.71 94.57 93.97 73.90 73.90 90.67 
oh0.wc 72.31 67.75 75.97 49.38 73.44 73.44 80.10 
oh10.wc 69.65 70.02 69.54 58.79 69.73 69.73 72.40 
B-cell1 100.00 100.00 100.00 100.00 91.50 91.50 91.30 
B-cell2 96.63 83.53 83.47 77.63 62.71 62.71 74.58 
B-cell3 98.22 82.47 85.47 79.26 82.24 82.24 75.40 
base-hock 93.18 90.09 90.98 51.05 81.92 81.92 90.12 
TOX-171 85.56 90.53 93.09 79.93 74.27 74.27 76.27 



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)  236 

tr12.wc 84.88 57.77 60.01 66.33 49.50 49.50 56.08 
tr23.wc 93.77 53.86 55.25 51.11 54.80 54.80 55.96 
tr11.wc 82.47 50.72 53.49 63.92 46.58 46.58 54.39 
embryonal-tumours 92.22 97.00 97.00 96.39 97.00 97.00 94.33 
leukemia1 100.00 100.00 100.00 75.00 100.00 100.00 92.17 
leukemia2 100.00 77.33 78.00 95.00 55.33 55.33 62.00 
tr21.wc 89.97 48.26 53.61 70.43 44.04 44.04 47.01 
wap.wc 65.64 61.23 68.19 60.43 58.82 58.82 73.05 
PIX10P 98.00 98.20 96.80 98.00 90.00 90.00 96.00 
ORL10P 99.00 98.80 95.60 94.33 84.60 84.60 86.20 
CLL-SUB-111 85.45 84.97 87.86 69.32 74.71 74.71 67.00 
ohscal.wc 68.06 58.48 59.24 23.81 NA NA NA 
la2s.wc 69.68 60.48 71.89 40.99 61.94 NA 75.27 
la1s.wc 71.96 60.46 70.42 33.51 58.74 NA 75.16 
GCM 70.90 77.00 81.33 57.65 62.62 62.62 66.83 
SMK-CAN-187 85.96 75.63 NA 68.14 73.78 73.78 60.36 
new3s.wc 56.69 33.73 NA 16.13 NA NA NA 
GLA-BRA-180 76.48 77.89 NA 69.07 63.44 63.44 67.00 
Average(Image) 85.49 87.32 86.58 84.97 76.51 76.51 81.20 
Average(Microarry) 91.38 84.30 87.22 79.22 79.59 79.59 75.13 
Average(Text) 82.62 66.83 70.12 61.43 62.92 64.22 68.79 
Average 86.84 78.30 80.60 73.66 72.63 73.12 73.98 
Win/Draw/Loss - 25/2/8 24/2/9 31/2/2 29/1/5 28/1/6 28/0/7 

        

. 

 

TABLE 5: Accuracy of C4.5 with the six feature selection 

algorithms 

 
   Classification accuracy of C4.5 with  

Data set FAST FCBF CFS   ReliefF   Consist   FOCUS-SF Full set 
chess 94.02 94.02 90.43 97.83 99.44 94.34 99.44 
mfeat-fourier 71.25 75.74 77.80 76.40 71.06 71.06 75.93 
coil2000 94.03 94.03 94.03 94.03 93.97 94.03 93.93 
elephant 99.90 99.94 99.94 99.90 99.94 99.94 95.27 
arrhythmia 71.53 70.05 69.21 66.15 66.59 66.59 65.23 
fqs-nowe 69.81 73.35 69.13 66.46 68.42 68.42 66.96 
colon 90.40 90.76 89.14 82.38 86.90 86.90 82.33 
fbis.wc 69.41 69.35 77.52 57.03 68.70 68.70 NA 
AR10P 77.69 75.54 79.54 71.54 64.92 64.92 70.92 
PIE10P 84.13 82.95 86.10 80.32 81.33 81.33 79.14 
oh0.wc 71.88 75.45 84.20 57.43 83.47 83.47 81.37 
oh10.wc 69.33 73.75 74.65 67.65 75.60 75.60 72.38 
B-cell1 87.33 81.80 82.90 78.17 88.60 88.60 74.90 
B-cell2 71.00 63.24 64.07 65.85 60.80 60.80 64.31 
B-cell3 78.07 81.07 77.02 83.04 72.84 72.84 77.96 
base-hock 92.02 89.81 89.57 49.92 90.57 90.57 91.54 
TOX-171 76.85 64.92 68.69 60.24 68.66 68.66 58.44 
tr12.wc 81.68 85.43 31.96 74.02 43.76 84.47 81.19 
tr23.wc 89.87 94.80 46.38 86.78 67.07 96.57 92.93 
tr11.wc 80.22 82.04 36.95 69.25 46.81 84.11 79.09 
embryonal-tumours 87.78 97.00 97.00 88.89 97.00 97.00 87.50 
leukemia1 100.00 97.00 97.00 61.11 97.00 97.00 89.17 
leukemia2 100.00 75.00 78.00 88.89 81.33 81.33 60.33 
tr21.wc 90.47 88.32 69.23 80.26 68.76 88.21 80.72 
wap.wc 62.26 67.60 32.87 64.32 21.86 63.27 NA 
PIX10P 97.00 95.40 98.80 93.33 92.20 92.20 93.00 
ORL10P 90.33 82.60 90.20 74.67 84.00 84.00 72.40 
CLL-SUB-111 83.64 73.85 74.36 64.80 78.76 78.76 60.89 
ohscal.wc 67.73 66.69 68.42 27.30 NA NA NA 
la2s.wc 72.40 72.53 79.08 51.52 75.53 NA NA 
la1s.wc 72.45 72.57 77.63 47.05 75.33 NA NA 
GCM 58.73 59.16 60.92 52.73 45.79 45.79 51.81 
SMK-CAN-187 85.19 71.42 NA 66.14 77.83 77.83 62.17 
new3s.wc 55.64 60.51 NA 17.83 NA NA NA 
GLA-BRA-180 71.30 68.22 NA 65.00 64.56 64.56 63.22 
Average(Image) 81.70 80.93 83.60 77.12 76.99 76.99 76.39 
Average(Microarry) 83.77 79.48 79.85 74.35 78.68 78.68 72.35 
Average(Text) 81.38 83.15 66.16 72.59 69.09 83.94 85.84 
Average 82.44 81.17 75.43 74.25 74.69 80.33 77.74 
Win/Draw/Loss - 17/2/16 21/1/13 28/2/5 27/0/8 19/1/10 30/0/5 

        

 

Table 5 shows the classification accuracy of C4.5. From it 

we observe that 

 
1) Compared with original data, the classification accuracy of 

C4.5 has been improved by FAST, FCBF, and FOCUS-SF 

by 4.69%, 3.43%, and 2.58%, respectively. Unfortunately, 

ReliefF, Consist, and CFS have decreased the 

classification accuracy by 3.49%, 3.05%, and 2.31%, 

respectively. FAST obtains the rank of 1 with a margin of 

1.26% to the second best accuracy 81.17% of FCBF.  

2) For image data, the classification accuracy of C4.5 has 

been improved by all the six feature selection algorithms 

FAST, FCBF, CFS, ReliefF, Consist, and FOCUS-SF by 

5.31%, 4.54%, 7.20%, 0.73%, 0.60%, and 0.60%, 

respectively. This time FAST ranks 2 with a margin of 

1.89% to the best accuracy 83.6% of CFS and a margin of 

4.71% to the worst accuracy 76.99% of Consist and 

FOCUS-SF.  

 

3) For microarray data, the classification accuracy of C4.5 

has been improved by all the six algorithms FAST, FCBF, 

CFS, ReliefF, Consist, and FOCUS-SF by 11.42%, 7.14%, 

7.51%, 2.00%, 6.34%, and 6.34%, respectively. FAST 

ranks 1 with a margin of 3.92% to the second best 

accuracy 79.85% of CFS.  
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For text data, the classification accuracy of C4.5 has been 

decreased by algorithms FAST, FCBF, CFS, ReliefF, Consist 

and FOCUS-SF by 4.46%, 2.70%, 19.68%, 13.25%, 16.75%, and 

1.90% respectively. FAST ranks 3 with a margin of 2.56% to the 

best accuracy 83.94% of FOCUS-SF and a margin of 15.22% to 

the worst accuracy 66.16% of CFS. 

TABLE 6: Accuracy of IB1 with the six feature selection 

algorithms 

 
   Classification accuracy of IB1 with  

Data set FAST FCBF CFS ReliefF Consist FOCUS-SF Full set 
chess 90.18 91.47 84.78 96.86 95.09 90.79 90.60 
mfeat-fourier 77.87 81.69 83.72 80.00 77.71 77.71 80.13 
coil2000 88.42 89.27 89.42 89.16 89.96 67.62 89.87 
elephant 98.97 99.99 99.99 100.00 99.97 99.97 99.31 
arrhythmia 64.48 60.10 63.67 54.35 55.22 55.22 53.27 
fqs-nowe 56.59 66.20 70.48 70.74 63.02 63.02 65.32 
colon 91.90 78.76 84.38 82.54 85.95 85.95 76.14 
fbis.wc 60.09 61.91 72.94 43.69 60.83 60.83 NA 
AR10P 73.33 79.08 86.77 71.79 80.46 80.46 49.54 
PIE10P 99.21 99.90 99.05 99.37 92.19 92.19 99.62 
oh0.wc 67.33 63.19 75.53 48.12 68.34 68.34 20.64 
oh10.wc 64.06 63.56 66.46 56.67 63.41 63.41 8.40 
B-cell1 100.00 94.90 95.40 92.17 93.30 93.30 73.00 
B-cell2 97.00 87.02 86.42 71.78 58.00 58.00 70.20 
B-cell3 98.96 95.02 95.02 83.48 80.20 80.20 83.98 
base-hock 89.06 92.24 92.60 50.86 92.95 92.95 78.81 
TOX-171 75.60 95.92 97.90 96.32 65.14 65.14 86.44 
tr12.wc 82.11 83.43 84.92 61.02 84.91 84.91 40.13 
tr23.wc 90.18 86.55 88.90 67.62 86.80 86.80 56.11 
tr11.wc 78.43 79.65 81.89 59.81 81.26 81.26 49.58 
embryonal-tumours 90.56 97.00 97.00 90.56 97.00 97.00 89.50 
leukemia1 100.00 97.00 97.00 67.22 97.00 97.00 76.50 
leukemia2 100.00 84.33 75.00 79.72 71.00 71.00 59.67 
tr21.wc 87.98 85.34 91.23 76.41 87.23 87.23 67.85 
wap.wc 56.47 57.31 68.49 61.03 58.74 58.74 NA 
PIX10P 99.00 99.00 99.00 99.00 95.00 95.00 99.00 
ORL10P 100.00 97.60 95.20 94.67 95.00 95.00 94.40 
CLL-SUB-111 79.09 74.94 81.62 68.66 65.83 65.83 NA 
ohscal.wc 52.94 49.52 57.98 19.67 NA NA NA 
la2s.wc 68.33 68.16 79.88 39.95 73.43 NA NA 
la1s.wc 67.44 67.01 76.41 33.98 71.42 NA NA 
GCM 68.49 66.71 69.50 58.59 52.54 52.54 58.87 
SMK-CAN-187 76.28 66.08 NA 70.40 70.58 70.58 63.57 
new3s.wc 49.46 52.38 NA 8.82 NA NA NA 
GLA-BRA-180 72.96 73.89 NA 68.33 73.00 73.00 61.78 
Average(Image) 84.33 87.25 89.04 85.93 83.90 83.90 81.34 
Average(Microarry) 88.75 85.97 86.91 78.78 76.76 76.76 75.17 
Average(Text) 77.66 77.63 81.56 64.66 79.05 76.63 55.78 
Average 83.63 83.07 85.32 74.90 79.11 78.19 69.88 
Win/Draw/Loss - 18/1/16 14/1/20 25/2/8 20/0/15 23/0/12 27/1/7 

        

 

Table 6 shows the classification accuracy of IB1. From it 

we observe that 

 
1) Compared with original data, the classification ac-curacy 

of IB1 has been improved by all the six fea-ture selection 

algorithms FAST, FCBF, CFS, ReliefF, Consist, and 

FOCUS-SF by 13.75%, 13.19%, 15.44%, 5.02%, 9.23%, 

and 8.31%, respectively. FAST ranks 2 with a margin of 

1.69% to the best accuracy 85.32% of CFS. The 

Win/Draw/Loss records show that FAST outperforms all 

other algorithms except for CFS, winning and losing on 14 

and 20 out of the 35 data sets, respectively.  

Although FAST does not perform better than CFS, we 

observe that CFS is not available on the three biggest 

data sets of the 35 data sets. Moreover, CFS is very 

slow compared with other algorithms as reported in 

Section 4.4.2.  

 

2) For image data, the classification accuracy of IB1 has been 

improved by all the six feature selection algorithms FAST, 

FCBF, CFS, ReliefF, Consist, and FOCUS-SF by 3.00%, 

5.91%, 7.70%, 4.59%, 2.56%, and 2.56%, respectively. 

FAST ranks 4 with a mar-gin of 4.70% to the best 

accuracy 89.04% of CFS.  

 

3) For microarray data, the classification accuracy of IB1 

has been improved by all the six algorithms FAST, 

FCBF, CFS, ReliefF, Consist, and FOCUS-SF by 

13.58%, 10.80%, 11.74%, 3.61%, 1.59%, and 1.59%, 

respectively. FAST ranks 1 with a margin of 1.85% to 

the second best accuracy 86.91% of CFS and a margin 

of 11.99% to the worst accuracy 76.76% of Consist and 

FOCUS-SF.  
4) For text data, the classification accuracy of IB1 has 

been improved by the five feature selec-tion algorithms 

FAST, FCBF, CFS, ReliefF, Consist, and FOCUS-SF 

by 21.89%, 21.85%, 25.78%, 8.88%, 23.27%, and 

20.85%, respectively. FAST ranks 3 with a margin of 

3.90% to the best accuracy 81.56% of CFS.  

 

TABLE 7: Accuracy of RIPPER with the six feature selection 

algorithms 

 

Data set 
 Classification accuracy of RIPPER with  

 

FAST FCBF CFS ReliefF Consist FOCUS-SF Full set 
 

chess 94.09 94.09 90.43 97.81 99.17 94.34 99.16 
 

mfeat-fourier 70.40 73.46 75.35 72.58 69.13 69.13 73.36 
 

coil2000 94.02 94.03 94.03 94.03 93.93 94.03 93.89 
 

elephant 72.57 66.84 78.85 77.31 98.62 98.62 79.38 
 

arrhythmia 68.36 72.21 70.97 71.01 71.27 71.27 71.36 
 

fqs-nowe 69.81 73.66 69.15 69.05 68.52 68.52 63.62 
 

colon 93.41 80.14 79.76 77.14 84.05 84.05 74.19 
 

fbis.wc 65.58 68.18 75.49 53.29 65.10 65.10 NA 
 

AR10P 73.08 64.62 65.08 59.23 57.23 57.23 56.62 
 

PIE10P 88.57 80.57 80.00 79.37 76.67 76.67 79.33 
 

oh0.wc 65.90 69.93 78.98 41.27 79.12 79.12 NA 
 

oh10.wc 67.90 69.41 70.08 62.22 71.47 71.47 NA 
 

B-cell1 86.50 79.50 85.50 80.67 89.60 89.60 74.10 
 

B-cell2 80.67 61.31 55.13 58.56 53.53 53.53 53.42 
 

B-cell3 82.52 76.24 59.42 72.07 72.31 72.31 60.67 
 

base-hock 91.04 89.29 90.72 51.13 92.34 92.34 88.26 
 

TOX-171 78.22 67.61 70.59 63.39 60.12 60.12 62.58 
 

tr12.wc 82.53 81.13 79.67 71.56 83.07 83.07 77.94 
 

tr23.wc 91.15 95.96 93.22 84.80 95.11 95.11 89.91 
 

tr11.wc 80.13 79.52 80.72 66.67 81.46 81.46 NA 
 

embryonal-tumours 80.56 97.00 97.00 85.28 97.00 97.00 82.83 
 

leukemia1 100.00 97.00 97.00 64.44 97.00 97.00 86.67 
 

leukemia2 100.00 70.67 71.00 92.50 76.33 76.33 63.67 
 

tr21.wc 91.07 89.75 90.53 84.63 87.59 87.59 NA 
 

wap.wc 50.90 63.54 67.06 58.48 60.00 60.00 NA 
 

PIX10P 96.67 93.00 85.80 86.67 92.00 92.00 82.60 
 

ORL10P 85.33 73.80 62.40 66.00 75.60 75.60 54.20 
 

CLL-SUB-111 83.99 74.91 70.61 68.76 81.83 81.83 66.77 
 

ohscal.wc 62.34 62.98 62.06 24.98 NA NA NA 
 

la2s.wc 69.37 70.06 79.73 40.93 76.52 NA NA 
 

la1s.wc 67.56 68.03 78.50 41.11 74.26 NA NA 
 

GCM 53.13 49.86 50.32 47.41 46.26 46.26 44.09 
 

SMK-CAN-187 77.53 68.88 NA 61.81 72.47 72.47 59.55 
 

new3s.wc 44.46 52.69 NA 9.69 NA NA NA 
 

GLA-BRA-180 70.19 68.11 NA 59.44 65.22 65.22 60.56 
 

Average(Image) 80.64 76.52 72.96 72.15 73.19 73.19 68.29 
 

Average(Microarry) 81.66 74.44 73.85 71.55 77.33 77.33 68.31 
 

Average(Text) 79.48 81.35 82.81 69.63 82.58 82.15 89.83 
 

Average 80.62 77.49 77.06 70.94 78.46 78.30 72.98 
 

Win/Draw/Loss - 20/1/14 22/0/13 28/0/7 21/0/14 22/0/13 30/0/5 
 

 

Table 7 shows the classification accuracy of RIPPER. 

From it we observe that 

 
1) Compared with original data, the classification ac-curacy 

of RIPPER has been improved by the five feature selection 

algorithms FAST, FCBF, CFS, Con-sist, and FOCUS-SF 

by 7.64%, 4.51%, 4.08%, 5.48%, and 5.32%, respectively; 

and has been decreased by ReliefF by 2.04%. FAST ranks 

1 with a margin of 2.16% to the second best accuracy 
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78.46% of Consist. The Win/Draw/Loss records show that 

FAST outperforms all other algorithms.  

2) For image data, the classification accuracy of RIP-PER has 

been improved by all the six feature selec-tion algorithms 

FAST, FCBF, CFS, ReliefF, Consist, and FOCUS-SF by 

12.35%, 8.23 %, 4.67%, 3.86%, 4.90%, and 4.90%, 

respectively. FAST ranks 1 with a  

 

margin of 4.13% to the second best accuracy 76.52% of 

FCBF. 

 
3) For microarray data, the classification accuracy of RIPPER 

has been improved by all the six al-gorithms FAST, FCBF, 

CFS, ReliefF, Consist, and FOCUS-SF by 13.35%, 6.13%, 

5.54%, 3.23%, 9.02%, and 9.02%, respectively. FAST 

ranks 1 with a mar- 
 

gin of 4.33% to the second best accuracy 77.33% of 

Consist and FOCUS-SF. 

 

4) For text data, the classification accuracy of RIPPER has 

been decreased by FAST, FCBF, CFS, ReliefF, Consist, 

and FOCUS-SF by 10.35%, 8.48%, 7.02%, 20.21%, 

7.25%, and 7.68%, respectively. FAST ranks 5 with a 

margin of 3.33% to the best accuracy 82.81% of CFS.  

 

In order to further explore whether the classification 

accuracies of each classifier with the six feature selection 

algorithms are significantly different, we performed four 

Friedman tests individually. The null hypotheses are that the 

accuracies are equivalent for each of the four classifiers with 

the six feature selection algorithms. The test results are p = 0. 

This means that at = 0.1, there are evidences to reject the null 

hypotheses and the accuracies are different further differences 

exist in the six feature selection algorithms. Thus four post-

hoc Nemenyi tests were conducted. Figs. 5, 6, 7, and 8 show 

the results with = 0.1 on the 35 data sets. 

 

 

 

 

Fig. 5: Accuracy comparison of Naive Bayes with the six 

feature selection algorithms against each other with the 

Nemenyi test. 

 

 

 

 

Fig. 6: Accuracy comparison of C4.5 with the six fea-ture 

selection algorithms against each other with the Nemenyi test. 

 

 

 

 

Fig. 7: Accuracy comparison of IB1 with the six fea-ture 

selection algorithms against each other with the Nemenyi test. 

 

 

 

 

Fig. 8: Accuracy comparison of RIPPER with the six feature 

selection algorithms against each other with the Nemenyi test. 

 
From Fig. 5 we observe that the accuracy of Naive Bayes with 

FAST is statistically better than those with ReliefF, Consist, and 

FOCUS-SF. But there is no consis-tent evidence to indicate 

statistical accuracy differences between Naive Bayes with FAST 

and with CFS, which also holds for Naive Bayes with FAST and 

with FCBF. 

 

From Fig. 6 we observe that the accuracy of C4.5 with 

FAST is statistically better than those with ReliefF, Con-sist, 

and FOCUS-SF. But there is no consistent evidence to 

indicate statistical accuracy differences between C4.5 with 

FAST and with FCBF, which also holds for C4.5 with FAST 

and with CFS. 

 

From Fig. 7 we observe that the accuracy of IB1 with 

FAST is statistically better than those with ReliefF. But there 

is no consistent evidence to indicate statistical accuracy 

differences between IB1 with FAST and with FCBF, Consist, 

and FOCUS-SF, respectively, which also holds for IB1 with 

FAST and with CFS. 

 

From Fig. 8 we observe that the accuracy of RIPPER with 

FAST is statistically better than those with ReliefF. But there 

is no consistent evidence to indicate statistical accuracy 

differences between RIPPER with FAST and with FCBF, 

CFS, Consist, and FOCUS-SF, respectively. 

 

For the purpose of exploring the relationship between 

feature selection algorithms and data types, i.e. which 

algorithms are more suitable for which types of data, we rank 

the six feature selection algorithms according to the 

classification accuracy of a given classifier on a specific type 

of data after the feature selection algorithms are performed. 

Then we summarize the ranks of the feature selection 

algorithms under the four different clas-sifiers, and give the 

final ranks of the feature selection algorithms on different 

types of data. Table 8 shows the results. 

 

From Table 8 we observe that (i) for image data, CFS 

obtains the rank of 1, and FAST ranks 3; (ii) for microar-ray 

data, FAST ranks 1 and should be the undisputed first choice, 

and CFS is a good alternative; (iii) for text data, CFS obtains 

the rank of 1, and FAST and FCBF are alternatives; and (iv) 
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for all data, FAST ranks 1 and should be the undisputed first 

choice, and FCBF, CFS are good alternatives. 

 

From the analysis above we can know that FAST performs 

very well on the microarray data. The reason lies in both the 

characteristics of the data set itself and the property of the 

proposed algorithm. 

 

Microarray data has the nature of the large number of 

features (genes) but small sample size, which can cause 

“curse of dimensionality” and over-fitting of the training data 

[19]. In the presence of hundreds or thousands of 
 

features, researchers notice that it is common that a large number 

of features are not informative because they are either irrelevant 

or redundant with respect to the class concept [66]. Therefore, 

selecting a small number of discriminative genes from thousands 

of genes is essential for successful sample classification [27], 

[66]. 

 

Our proposed FAST effectively filters out a mass of 

irrelevant features in the first step. This reduces the possibility 

of improperly bringing the irrelevant features into the 

subsequent analysis. Then, in the second step, FAST removes 

a large number of redundant features by choosing a single 

representative feature from each cluster of redundant features. 

As a result, only a very small number of discriminative 

features are selected. This coincides with the desire happens 

of the microarray data analysis. 

 

4.4.4 Sensitivity analysis 

 

Like many other feature selection algorithms, our pro-posed 

FAST also requires a parameter that is the threshold of feature 

relevance. Different values might end with different 

classification results. 

 
In order to explore which parameter value results in the best 

classification accuracy for a specific classification problem with 

a given classifier, a 10 fold cross-validation strategy was 

employed to reveal how the classification accuracy is changing 

with value of the parameter 

corresponding classifiers with the values. From it we observe 

that: 

 

1) Generally, for each of the four classification algo-

rithms, (i) different values result in different clas-

sification accuracies; (ii) there is a value where the 

corresponding classification accuracy is the best; and 

(iii) the values, in which the best classification 

accuracies are obtained, are different for both the 

different data sets and the different classification 

algorithms. Therefore, an appropriate value is desired 

for a specific classification problem and a given 

classification algorithm.  

 

2) In most cases, the default values recommended by 

FAST are not the optimal. Especially, in a few cases (e. 

g., data sets GCM, CLL-SUB-11, and TOX-171), the 

corresponding classification accuracies are very small. 

This means the results presented in Section 4.4.3 are not 

the best, and the performance could be better.  

 

3) For each of the four classification algorithms, al-though 

the values where the best classification accuracies are 

obtained are different for different data sets, The value of 

0.2 is commonly accepted because the corresponding 

classification accuracies are among the best or nearly the 

best ones.  

 

When determining the value of , besides classification accuracy, the 

proportion of the selected features should be taken into account as 

well. This is because improper proportion of the selected features 

results in a large number of features are retained, and further affects 

the classification efficiency. 

 

   

Fig. 9: Accuracies of the four classification algorithms 

with different values. 

 

Fig. 9 shows the results where the 35 subfigures rep-

resent the 35 data sets, respectively. In each subfigure, 

the four curves denotes the classification accuracies of 

the four classifiers with the different values. The cross 

points of the vertical line with the horizontal axis repre-

sent the default values of the parameter recommended 

by FAST, and the cross points of the vertical line with 
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the four curves are the classification accuracies of the 

explore whether or not FAST still outperforms when 

optimal threshold values are used for the comparing 

algorithms, 10-fold cross-validation methods were 

firstly used to determine the optimal threshold values 

and then were employed to conduct classification for 

each of the four classification methods with the different 

feature subset selection algorithms upon the 35 data sets. 

The results reveal that FAST still outperforms both 

FCBF and ReliefF for all the four classification methods, 

Fig. 10 shows the full details. At the same time, 

Wilcoxonsigned ranks tests [75] with = 0.05 were 

performed to confirm the results as advised by Demsar 

[76]. All the values are smaller than 0.05, this indicates 

that the FAST is significantly better than both FCBF 

and ReliefF (please refer to Table 9 for details). 

 
Figure. 10: Accuracy differences between FAST and 
the comparing algorithms 
 

 

TABLE 9: p values of the Wilcoxon tests 

 

Alternative 

hypothesis NB C4.5 IB1 

REPPE

R 

     

FAST > FCBF 

8.94E-

07 0.0013 

5.08E-

05 

8.78E-

05 

FAST > ReliefF 

4.37E-

07 

3.41E-

04 

4.88E-

06 

7.20E-

06 

     

 

Note that the optimal value can be obtained via the 

cross-validation method. Unfortunately, it is very time 

consuming. 

 

IV. CONCLUSION 

 
In this paper, we have presented a novel clustering-

based feature subset selection algorithm for high 

dimensional data. The algorithm involves (i) removing 

irrelevant features, (ii) constructing a minimum 

spanning tree from relative ones, and (iii) partitioning 

the MST and selecting representative features. In the 

proposed algorithm, a cluster consists of features. Each 

cluster is treated as a single feature and thus 

dimensionality is drastically reduced. 

 

 

We have compared the performance of the proposed 

algorithm with those of the five well-known feature 

selection algorithms FCBF, ReliefF, CFS, Consist, and 

FOCUS-SF on the 35 publicly available image, microar-

ray, and text data from the four different aspects of the 

proportion of selected features, runtime, classification 

accuracy of a given classifier, and the Win/Draw/Loss 

record. Generally, the proposed algorithm obtained the 

best proportion of selected features, the best runtime, 

and the best classification accuracy for Naive Bayes, 

C4.5, and RIPPER, and the second best classification 

ac-curacy for IB1. The Win/Draw/Loss records 

confirmed the conclusions. 

 

We also found that FAST obtains the rank of 1 for 

microarray data, the rank of 2 for text data, and the rank 

of 3 for image data in terms of classification accuracy of 

the four different types of classifiers, and CFS is a good 

alternative. At the same time, FCBF is a good 

alternative for image and text data. Moreover, Consist 

and FOCUS-SF are alternatives for text data. 

 

 

For the future work, we plan to explore different types 

of correlation measures, and study some formal 

properties of feature space. 
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